## BioMin F ten times more acidresistant than NovaMin toothpastes

BioMin F is the first and only oral care product to incorporate fluoride within a bioactive glass. Developed as a result of 15 years of research and development at Queen Mary University London and engineered specifically to overcome the inherent limitations of traditional soluble fluoride-containing toothpastes, BioMin F is unique in its ability to deliver slow-release fluoride, calcium and phosphate mineral ions for up to 12 hours after brushing to enable rapid and continual production of stable, acid-resistant fluorapatite within tubules and tooth surfaces.

Unlike NovaMin based toothpastes, which only produce hydroxyapatite, BioMin F toothpaste produces fluorapatite which is ten times more resistant to acid dissolution. This means that when teeth are remineralised using BioMin F toothpaste they are ten times more resistant to acid attack and therefore ten times less prone to caries. It also means that the tubular occlusion achieved with BioMin F is ten times more resistant to dissolution, which means that it remains *in situ* longer and therefore provides much longer-term resistance to dentine hypersensitivity.

## Brush twice daily for 24-hour fluoride protection

BioMin F toothpaste contains a patented fluoro calcium phosphosilicate bioactive glass which bonds to the teeth and, with an average particle size of 5 microns, these tiny particles enter the dentinal tubules to occlude them. Gradually dissolving over a period of up to 12 hours, it slowly releases calcium, fluoride and phosphate ions at a therapeutically effective level. These work in concert with saliva in the mouth to form fluorapatite, which is ten times more resistant to acids than hydroxyapatite. This applies even if the patient's toothbrushing technique is erratic and less efficient. So, brushing twice daily with BioMin F provides a therapeutically effective level of fluoride for up to 24 hours which consequently strengthens the teeth, aids effective remineralisation of the enamel and prevents fluid flow through the dentinal tubules (hydraulic conductivity) to reduce sensitivity.

Available from Trycare, BioMin F delivers controlled fluoride release to strengthen teeth against acid attack and reduce dentine hypersensitivity including scaling and post-bleaching sensitivity, a problem that reduces patient acceptance of this highly profitable revenue stream.

Starting the remineralisation process ahead of treatments such as scaling, root planing and whitening means the enamel begins strengthening in advance. Whilst brushing with BioMin F immediately after treatment has been shown to halt the development of sensitivity, starting to take effect rapidly after brushing.

With an average particle size of 5 microns, these tiny particles are so fine the patient cannot feel them. In fact, patients frequently report that their teeth feel smoother and cleaner, that they notice





an absence of background oral sensitivity and that their gums are healthier and less prone to bleeding.

## Proven effective treatment for dentine hypersensitivity

BioMin F is a genuine practice builder enabling patients to enhance their smile and improve their oral health and comfort. It is the only toothpaste approved by the Oral Health Foundation for sensitivity relief and remineralisation.

Studies around the world confirm that the fluorapatite developed from BioMin F penetrates deeply inside exposed dentine tubules, plugging them and preventing the fluid flow which causes dentine hypersensitivity.

BioMin F has a fresh mint taste and leaves the mouth feeling clean and healthy. For those who prefer a fluoride-free alternative there is BioMin C, which is based on a calcium/phosphate bioglass. BioMin C develops hydroxyapatite on the tooth surfaces, blocking exposed dentinal tubules, and has been shown to be more effective than other sensitivity toothpastes.

For further information visit the Trycare website, www.trycare. co.uk/biomin, contact your local Trycare representative or call 01274 885544.